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ABSTRACT

Background: The goal of this study was to identify a clinical biomarker signature of brain amyloi-
dosis in the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI1) mild cognitive impairment
(MCI) cohort.

Methods: We developed a multimodal biomarker classifier for predicting brain amyloidosis using
cognitive, imaging, and peripheral blood protein ADNI1 MCI data. We used CSF b-amyloid 1–42
(Ab42) #192 pg/mL as proxy measure for Pittsburgh compound B (PiB)-PET standard uptake
value ratio $1.5. We trained our classifier in the subcohort with CSF Ab42 but no PiB-PET data
and tested its performance in the subcohort with PiB-PET but no CSF Ab42 data. We also exam-
ined the utility of our biomarker signature for predicting disease progression from MCI to Alz-
heimer dementia.

Results: The CSF training classifier selected Mini-Mental State Examination, Trails B, Auditory
Verbal Learning Test delayed recall, education, APOE genotype, interleukin 6 receptor, clus-
terin, and ApoE protein, and achieved leave-one-out accuracy of 85% (area under the curve
[AUC] 5 0.8). The PiB testing classifier achieved an AUC of 0.72, and when classifier self-
tuning was allowed, AUC 5 0.74. The 36-month disease-progression classifier achieved AUC
5 0.75 and accuracy 5 71%.

Conclusions: Automated classifiers based on cognitive and peripheral blood protein variables can
identify the presence of brain amyloidosis with a modest level of accuracy. Such methods could
have implications for clinical trial design and enrollment in the near future.

Classification of evidence: This study provides Class II evidence that a classification algorithm
based on cognitive, imaging, and peripheral blood protein measures identifies patients with brain
amyloid on PiB-PET with moderate accuracy (sensitivity 68%, specificity 78%). Neurology®

2015;84:729–737

GLOSSARY
Ab42 5 b-amyloid 1–42; AD 5 Alzheimer dementia; ADNI1 5 Alzheimer’s Disease Neuroimaging Initiative 1; AUC 5 area
under the curve; AVLT5 Auditory Verbal Learning Test; BDNF5 brain-derived neurotrophic factor; CI5 confidence interval;
IL-6R 5 interleukin 6 receptor; IL-13 5 interleukin 13; LOOCV 5 leave-one-out cross-validation; MCI 5 mild cognitive
impairment; MMSE 5 Mini-Mental State Examination; NPV 5 negative predictive value; PiB 5 Pittsburgh compound B;
PPV5 positive predictive value; ROC5 receiver operating characteristic; ROI5 region of interest; SUVR5 standard uptake
value ratio; SVM 5 support vector machine; TNF-a 5 tumor necrosis factor a.

A key breakthrough in Alzheimer dementia (AD) research has been the invention of PET com-
pounds that bind to amyloid deposits in the brain. Randomized secondary prevention trials of
anti-amyloid agents that could halt disease progression are presently under way. A vast number
of potential participants will need to be screened for these studies. This will expose many
amyloid-negative cognitively normal elderly to radiation. Alternatively, blood-based biomarkers
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would have the important advantage of being
safe, affordable, and easy to administer in large
cohorts and/or in rural areas and therefore
could have an enormous impact on clinical
care and clinical trials alike.

The current standard for identifying brain
amyloidosis is amyloid PET imaging.1

Recently, one research group proposed that
CSF b-amyloid 1–42 (Ab42) levels could serve
as reliable indicator of the presence of brain
amyloidosis.2 The pathologically validated cut-
off of CSF Ab42#192 pg/mL for discriminat-
ing AD from cognitively normal subjects3 was
found to be a reliable surrogate indicator of the
presence of brain amyloidosis (defined as
Pittsburgh compound B [PiB]-PET standard
uptake value ratio [SUVR] $1.5).4

We hypothesized that we would identify a
clinical biomarker signature of brain amyloi-
dosis composed of highly relevant to AD yet
simple to measure cognitive, imaging, and
peripheral blood protein markers using the
Alzheimer’s Disease Neuroimaging Initiative
1 (ADNI1) mild cognitive impairment
(MCI) cohort. Using an advanced support
vector machine (SVM) approach, we devel-
oped a multimodal classifier for predicting
brain amyloidosis. Unfortunately, only a small
fraction of the ADNI1 MCI cohort received
PiB-PET scans. Therefore, we took advantage
of the strong agreement between CSF Ab42

#192 pg/mL and PiB SUVR $1.5 thresholds
and used ADNI1MCI subjects with CSF Ab42

data but no PiB-PET biomarker data (n 5
151) to develop our classification methodology,
which was then tested in the smaller cohort of
ADNI1MCI subjects with PiB-PET data (n5
60). We also assessed the utility of our bio-
marker signature to predict subsequent clinical
progression to AD at 24 and 36 months in all
211 subjects.

METHODS Subjects. Data used to prepare this article were

obtained from the ADNI database (http://adni.loni.usc.edu).

ADNI is the result of efforts of many coinvestigators from a

broad range of academic institutions and private corporations;

subjects have been recruited from more than 50 sites across the

United States and Canada. For up-to-date information, see www.

adni-info.org. ADNI1 enrolled approximately 400 subjects with

amnestic MCI, 200 with mild AD, and 200 normal control

subjects, aged 55 to 90 years, between 2005 and 2008. Written

informed consent was obtained from all participants. The clinical

description of the ADNI1 cohort was recently published.5 The

full list of inclusion/exclusion criteria may be accessed online at

http://www.adni-info.org/Scientists/ADNIGrant.aspx.

ADNI1 enrolled 398 subjects with MCI. The 151 subjects

with MCI who provided peripheral blood and CSF, but not

PiB-PET data, were selected for inclusion in our training sample.

Conversely, the 60 subjects with MCI who provided peripheral

blood and PiB-PET imaging constituted our testing sample.

MCI progressors were defined as subjects with MCI who pro-

gressed to AD at any point of their follow-up. Nonprogressors

were defined as subjects with MCI who at the respective

24-month and 36-month visit were still diagnosed as MCI.

Standard protocol approvals, registrations, and patient
consents. ADNI study sites received approval from their institu-

tional ethical standards committee on human experimentation.

Written informed consent was obtained from all research subjects

participating in the study or their surrogates when applicable.

Feature selection. We selected the following well-established

cognitive measures for inclusion in the classifier models: the

Mini-Mental State Examination (MMSE),6 the most frequently

used brief cognitive screening instrument; Trails B,7 an easy-to-

administer measure of executive function; and the Auditory

Verbal Learning Test (AVLT) delayed recall,8 a sensitive word

list verbal memory measure.

We selected the following peripheral blood proteins for inclu-

sion in our models: ApoE, a protein involved in cholesterol and

Ab metabolism; brain-derived neurotrophic factor (BDNF),

whose circulating levels are altered in AD9; tumor necrosis factor

a (TNF-a), a proinflammatory and apoptotic marker elevated in

AD10; interleukin 6 receptor (IL-6R), the receptor molecule for

IL-6—a proinflammatory cytokine; interleukin 13 (IL-13), a

cytokine associated with Ab burden in AD11; and clusterin

(ApoJ), a lipoprotein involved in Ab fibril formation and clear-

ance.12 Many studies have demonstrated aberrant levels of each of

these proteins in peripheral blood in AD, and have found asso-

ciations between their concentrations and subsequent cognitive

decline and/or imaging changes.9–25 We applied log10 transfor-

mation to normalize the distribution of all ADNI1 plasma pro-

tein variables.

We also included APOE e4 genotype and hippocampal vol-

ume. APOE, the most established genetic risk factor for sporadic

AD,26 can be reliably determined from peripheral blood samples.

Hippocampal atrophy, the most established structural imaging

biomarker of AD, is readily detectable in the MCI and even

the presymptomatic stages of AD.27–30

PiB biomarker data. Description of PiB-PET acquisition may

be found at http://www.adni-info.org. We downloaded the PiB

SUVR measures from the University of Pittsburgh from the

ADNI Web site in October 2008. Each subject’s PiB SUVR

image was sampled with an automated 14 region-of-interest

(ROI) template including 9 cortical (anterior cingulate, frontal,

sensorimotor, lateral temporal, mesial temporal, parietal and

occipital cortex, the occipital pole, and the precuneus) and 3

subcortical (anterior ventral striatum, thalamus, and subcortical

white matter) ROIs in addition to the pons and the cerebellum.

We derived mean cortical PiB SUVR by averaging the 9 cortical

ROI measures. SUVR estimation was done blindly. PiB data were

acquired at various time points relative to the baseline MRI.

Fourteen subjects had their PiB scan at the time of their ADNI

baseline assessments, 40 subjects at the 12-month, one subject at

the 18-month, and 5 subjects at the 24-month follow-up

assessment. We paired PiB data with the corresponding

demographic and hippocampal volumetric variables from the
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same visit. Plasma protein measures were derived at baseline, and

therefore preceded PiB scans in some cases.

Fluid biomarker data. We downloaded the baseline CSF Ab42

data from the ADNI Web site (http://adni.loni.usc.edu) in

October 2008. The CSF collection and transportation

protocols and procedural details on CSF Ab42 measurements

are provided at http://www.adni-info.org and in a recent ADNI

publication.3 Plasma collection, proteomic platforms, and assays

are described in detail in reference 10.

Hippocampal segmentation. We downloaded and linearly reg-

istered the preprocessed baseline 1.5, 3-dimensional T1-weighted

scans to the International Consortium for Brain Mapping

53 brain template31 using a 9-parameter transformation.32 We

resampled the images to an isotropic space of 220 voxels along

each axis resulting in a final voxel size of 1 mm3. The hippocampi

were segmented with our recently developed and validated

automated machine-learning hippocampal segmentation technique

(AdaBoost), which uses adaptive boosting33 as previously

described.34–38 Hippocampal volumes were extracted.

Statistical methods. Our analyses were performed retrospec-

tively. We examined the baseline differences in subject demo-

graphics, cognitive performance, hippocampal volume, and

blood protein measures in the CSF training, PiB-PET testing,

and MCI progressor/nonprogressor cohorts using 2-tailed t tests
for continuous variables and x2 tests for categorical variables.

Support vector machine classifier. SVMs are a popular

machine-learning algorithm. SVMs have been particularly

successful in biological classification, because nonlinear kernels

introduced to the algorithm allow for nonplanar,

multidimensional surfaces to classify patterns of data. We

optimized the radial basis function kernel and the SVM cost

parameter through grid search using the e1071 package in R

(http://cran.r-project.org). Because noncontributory features

degrade the classification, we allowed our classifier to rank all

features and to iteratively remove those with lower weights until

it finds the set of features that yields maximal classification accuracy.

We trained the SVM algorithm in all ADNI1 subjects with

MCI who had available baseline protein and CSF Ab42 data

but no PiB-PET imaging (n 5 151). The outcome variable

was CSF Ab42 # or .192 pg/mL. The CSF training classifier

also included age, sex, and education. Cross-validation used the

leave-one-out (LOOCV) approach. We computed receiver oper-

ating characteristic (ROC) curve and area under the curve (AUC)

to assess the classifier’s prediction performance.

Our PiB classifiers used the subjects with MCI who had avail-

able protein and PiB-PET data (n5 60). We ran 2 PiB classifiers:

the first one was run with the fixed tuning parameters from the

CSF training classifier (PiB testing-without-tuning classifier) and

the second where the PiB classifier was allowed to tune its cost

and gamma parameters for optimal classification while using

LOOCV (PiB testing-with-tuning classifier). The reason for al-

lowing self-tuning while still restricting ourselves to the variables

chosen by the CSF training classifier was to further refine the

variable list to the ones that are most useful for predicting PiB

positivity.

Our primary goal was to identify a clinical biomarker signa-

ture of brain amyloidosis in the ADNI1 MCI cohort. The PiB

testing-without-tuning classifier results were used assigning

level-of-evidence statement because the classifier resulting from

PiB testing-with-tuning has incorporation bias. The PiB

testing-without-tuning results were assigned as Class II level of

evidence, while the PiB testing-with-tuning results were assigned

Class IV level of evidence.

Next, we explored how well the CSF training and the PiB

testing-with-tuning classifier features performed when predicting

future progression from MCI to AD at 24 and 36 months. We

ran these classifiers once with fixed parameters and a second time

while allowing self-tuning for optimal performance while using

LOOCV. Tuning allowed us to detect the optimal classifier per-

formance without restricting ourselves to parameters that worked

for predicting closely related but obviously not identical measures

(high PiB and low CSF Ab42).

All classifiers were further subjected to selection bias correc-

tion using permutation analyses. The permutation method

empirically evaluates the distribution of the test statistic under

the null hypothesis. We ran 10,000 permutations of the depen-

dent variable (clinical diagnosis) against the sets of individual bio-

marker characteristics for each individual classifier and defined a

final single corrected p value for each ROC.

We computed sensitivity, specificity, and accuracy for specific

biomarker cutpoints and computed normal approximation confi-

dence intervals (CIs) for those parameters.

All classifiers were rerun after excluding APOE e2 carriers

(CSF sample n 5 11; PiB sample n 5 3). The results can be

seen in table e-1 on the Neurology® Web site at Neurology.org.

RESULTS Demographic and baseline biomarker

comparisons. CSF training sample. Baseline demographic
and biomarker comparisons between the MCI group
with CSF Ab42 #192 pg/mL and the MCI group
with CSF Ab42 .192 pg/mL are shown in table 1.
The groups showed significant differences in cogni-
tive performance and genotype distribution: the CSF
Ab42 #192 pg/mL group had poorer AVLT and
higher Trails B scores and higher proportion of APOE
e41 subjects compared with the CSF Ab42 .192
pg/mL group.

PiB testing sample. Baseline demographic and bio-
marker comparisons between the MCI group with
PiB SUVR$1.5 and the MCI group with PiB SUVR
,1.5 are shown in table 1. Significantly poorer
MMSE scores were seen in the PiB SUVR ,1.5
group while AVLT and Trails B were similar in the
2 PiB groups. Plasma ApoE and CSF Ab42 levels were
significantly lower in subjects with MCI who had PiB
SUVR ,1.5; these subjects were also more likely to
be APOE e41.

Demographic comparisons of the CSF testing and PiB

training samples.We found no significant differences in
age, education, sex, APOE genotype, MMSE score,
hippocampal volume, and plasma protein levels
between subjects with MCI with CSF Ab42 #192
pg/mL and those with PiB SUVR $1.5. Subjects
with MCI who had CSF Ab42 #192 pg/mL per-
formed significantly worse on the AVLT and on
Trails B relative to subjects with MCI who had PiB
SUVR $1.5.

Demographic and biomarker variables were simi-
lar between subjects with MCI with CSF Ab42

.192 pg/mL and those with PiB SUVR,1.5 except

Neurology 84 February 17, 2015 731

ª 2015 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://adni.loni.usc.edu
http://www.adni-info.org
http://cran.r-project.org
http://Neurology.org


for marginally lower MMSE scores and plasma IL-6R
levels in the subjects with MCI from the CSF sample.

A subset of 29 subjects had both PiB-PET and
CSF Ab42 data, which allowed us to compute the
accuracy with which CSF Ab42 predicted PiB SUVR
$1.5. Twenty of the 21 subjects with PiB SUVR
$1.5 also had CSF Ab42 #192 pg/mL (sensitivity
95%). Seven of the 8 subjects with PiB SUVR ,1.5

also had CSF Ab42 .192 pg/mL (specificity 88%).
The overall predictive accuracy of PiB SUVR from
CSF Ab42 was 93%.

MCI progression to AD. The baseline demographic
and biomarker comparisons between subjects with
MCI who progressed to AD vs those who did not
at month 24 and month 36 can be seen in table 2.
At baseline, MCI progressors showed significantly

Table 1 Cognitive, demographic, and biomarker comparisons for the training and testing samples

Variable

CSF (training) MCI sample

CSF Ab42 £192 pg/mL (n 5 114) Ab42 >192 pg/mL (n 5 37) p Value

Age, y 74.5 (6.9) 73.7 (9.1) 0.6

Sex, % male 63 73 0.3

Education, y 15.6 (3.0) 15.7 (2.9) 0.9

MMSE at baseline 26.6 (1.8) 27.2 (1.7) 0.09

AVLT delayed recall at baseline 2.0 (2.6) 4.0 (3.2) ,0.0001a

Trails B at baseline, s 148 (76) 108 (65) 0.003a

Mean hippocampal volume, mm3 3,718 (565) 3,706 (623) 0.9

APOE genotype, % e41 64 24 ,0.0001a

CSF Ab42, pg/mL 136 (27) 247 (28) ,0.0001a

ApoE protein, log10 mg/mL 1.67 (0.19) 1.71 (0.15) 0.2

BDNF, log10 ng/mL 0.27 (0.38) 0.27 (0.44) 0.97

Clusterin, log10 mg/mL 2.49 (0.07) 2.47 (0.43) 0.2

IL-13, log10 pg/mL 1.59 (0.18) 1.6 (0.13) 0.8

IL-6R, log10 ng/mL 1.46 (0.15) 1.42 (0.12) 0.2

TNF-a, log10 pg/mL 0.82 (0.27) 0.85 (0.29) 0.6

Variable

PiB-PET (testing) MCI sample

PiB SUVR ‡1.5 (n 5 41) PiB SUVR <1.5 (n 5 19) p Value

Age, y 75.9 (8.1) 73.6 (8.0) 0.3

Sex, % male 61 74 0.4

Education, y 16.5 (2.6) 16.3 (2.9) 0.8

MMSE at baseline 26.8 (2.3) 28.1 (1.6) 0.01a

AVLT delayed recall at baseline 3.2 (4.1) 5.2 (4.7) 0.01a

Trails B at baseline, s 121 (63) 105 (69) 0.4

Mean hippocampal volume, mm3 3,642 (702) 3,860 (766) 0.3

APOE genotype, % e41 73 16 ,0.0001a

CSF Ab42, pg/mL 133 (31) 240 (31) ,0.0001a

ApoE protein, log10 mg/mL 1.65 (0.18) 1.76 (0.15) 0.03a

BDNF, log10 ng/mL 0.25 (0.41) 0.31 (0.28) 0.6

Clusterin, log10 mg/mL 2.49 (0.08) 2.48 (0.08) 0.7

IL-13, log10 pg/mL 1.62 (0.14) 1.59 (0.13) 0.4

IL-6R, log10 ng/mL 1.5 (0.11) 1.49 (0.15) 0.4

TNF-a, log10 pg/mL 0.81 (0.26) 0.73 (0.25) 0.3

Abbreviations: Ab42 5 b-amyloid 1–42; AVLT 5 Auditory Verbal Learning Test; BDNF 5 brain-derived neurotrophic factor;
IL-6R 5 interleukin 6 receptor; IL-13 5 interleukin 13; MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State
Examination; PiB 5 Pittsburgh compound B; SUVR 5 standard uptake value ratio; TNF-a 5 tumor necrosis factor a.
a Significant values.
Data are mean (SD) or %.
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lower MMSE and AVLT scores, higher Trails B
score, greater proportions of APOE e4 positivity,
and lower plasma ApoE protein concentrations. Hip-
pocampal volumes were marginally smaller in MCI
progressors relative to nonprogressors at either time
point.

Classifier results. CSF training classifier. The CSF train-
ing classifier used age, sex, education, hippocampal

volume, APOE genotype, and all plasma proteins
(ApoE, BDNF, clusterin, IL-6R, IL-13, and TNF-a)
to predict CSF Ab42 # or.192 pg/mL. Performance
optimization through feature ranking and iterative
parameter tuning and LOOCV were used. We
achieved the best AUC 5 0.8 and accuracy of 85%
(95% CI 5 79%–91%) with Trails B, APOE geno-
type, AVLT, education, IL-6R, clusterin, mean hippo-
campal volume, ApoE protein, and MMSE (listed in

Table 2 Cognitive, demographic, and biomarker comparisons for the MCI progressor and nonprogressor
samples

Variable

Month 24 sample

MCIprogressor (n 5 136) MCInonprogressor (n 5 192) p Value

Age, y 74.5 (7.2) 74.8 (7.3) 0.8

Sex, % male 61 66 0.4

Education, y 15.7 (2.9) 15.9 (3.0) 0.3

MMSE at baseline 26.6 (1.7) 27.4 (1.7) ,0.0001a

AVLT delayed recall at baseline 1.5 (2.0) 3.9 (3.8) ,0.0001a

Trails B at baseline, s 155 (81) 111 (63) ,0.0001a

Mean hippocampal volume, mm3 3,355 (602) 3,379 (675) 0.09

APOE genotype, % e41 67 46 ,0.0001a

ApoE protein, log10 mg/mL 1.65 (0.18) 1.7 (0.18) 0.017a

BDNF, log10 ng/mL 0.29 (0.39) 0.28 (0.4) 0.09

Clusterin, log10 mg/mL 2.48 (0.07) 2.49 (0.07) 0.7

IL-13, log10 pg/mL 1.61 (0.14) 1.59 (0.19) 0.3

IL-6R, log10 ng/mL 1.45 (0.14) 1.47 (0.13) 0.14

TNF-a, log10 pg/mL 0.82 (0.28) 0.84 (0.26) 0.4

Variable

Month 36 sample

MCIprogressor (n 5 161) MCInonprogressor (n 5 137) p Value

Age, y 74.6 (7.1) 74.9 (7.6) 0.7

Sex, % male 60 70 0.08

Education, y 15.7 (2.9) 15.8 (2.9) 0.7

MMSE at baseline 26.7 (1.7) 27.6 (3.8) ,0.0001a

AVLT delayed recall at baseline 1.6 (2.1) 4.4 (3.5) ,0.0001a

Trails B at baseline, s 151 (81) 107 (60) ,0.0001a

Mean hippocampal volume, mm3 3,251 (612) 3,399 (717) 0.06

APOE genotype, % e41 67 39 ,0.0001a

ApoE protein, log10 mg/mL 1.66 (0.18) 1.71 (0.18) 0.007a

BDNF, log10 ng/mL 0.29 (0.39) 0.26 (0.37) 0.6

Clusterin, log10 mg/mL 2.49 (0.07) 2.48 (0.07) 0.6

IL-13, log10 pg/mL 1.6 (0.16) 1.59 (0.19) 0.6

IL-6R, log10 ng/mL 1.45 (0.14) 1.46 (0.14) 0.5

TNF-a, log10 pg/mL 0.81 (0.28) 0.84 (0.26) 0.4

Abbreviations: AVLT 5 Auditory Verbal Learning Test; BDNF 5 brain-derived neurotrophic factor; IL-6R 5 interleukin 6
receptor; IL-13 5 interleukin 13; MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State Examination; TNF-a 5

tumor necrosis factor a.
a Significant values.
Data are mean (SD) or %.
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rank order). The permutation-corrected classifier sig-
nificance was p , 0.00001. Taking into account that
CSF #192 pg/mL is found in 74% of ADNI subjects
with MCI, our classifier achieved sensitivity 5 92%,
specificity 5 65%, positive predictive value (PPV) 5
88%, and negative predictive value (NPV) 5 74%.
Results are shown in panel A of the figure and table
e-2. APOE genotype alone achieved accuracy of 76%
and AUC 5 0.7 (95% CI 5 69%–83%).

PiB testing-without-tuning classifier. We rigidly
entered the 9 features and the optimized cost and
gamma parameters selected by the CSF training clas-
sifier in the PiB testing classifier. The classifier
achieved an AUC of 0.78 in predicting PiB-positive
(PiB SUVR $1.5) and PiB-negative (PiB SUVR
,1.5) cases. Taking into account that a positive amy-
loid PET scan is found in 63% of ADNI subjects
with MCI, our classifier achieved sensitivity 5

68%, specificity 5 78%, PPV 5 84%, and
NPV 5 59%. The ROC curve is shown in panel C
of the figure. At fixed 80% sensitivity, the classifier
showed 65% sensitivity. The permutation-corrected
classifier significance was p 5 0.19. APOE genotype
alone achieved accuracy of only 28% and AUC 5

0.78 (95% CI 5 17%–39%).

PiB testing-with-tuning classifier. Because we developed
a classifier model using a proxy measure for brain amy-
loidosis (CSF Ab42) that is highly correlated but not

identical to the true measure of brain amyloidosis
(PiB-PET), we reran the PiB testing classifier using the
9 features selected by the CSF training classifier while
allowing the classifier to rank and select from these fea-
tures and fine-tune its parameters for optimal classifica-
tion. Using LOOCV, this classifier achieved an accuracy
of 83% (95% CI 5 74%–93%) and an AUC of 0.78.
Taking into account that a positive amyloid PET scan is
found in 63% of ADNI subjects withMCI, our classifier
achieved sensitivity5 79%, specificity5 83%, PPV5

89%, and NPV 5 70%. The ROC curve is shown in
panel B of the figure. The features selected by the final
model (in rank order) were APOE genotype, MMSE,
Trails B, IL-6R, and clusterin (see table e-2). The
permutation-corrected classifier significance was p ,

0.00001. APOE genotype alone achieved accuracy of
77% and AUC 5 0.7 (95% CI 5 66%–88%).

Disease-progression classifiers. We further explored
how well the set of 9 variables selected by the CSF
training classifier could predict progression from
MCI to AD at 24 and 36 months. Running the strin-
gent model using fixed parameters from the CSF
training classifier resulted in an AUC 5 0.72 at 24
months and AUC 5 0.76 at 36 months. Neither
classifier produced acceptable accuracy. The ROC
curves are shown in panels E and G of the figure.

Once we allowed the disease-progression classifiers
to rank and select features and fine-tune their

Figure Classifier results

AUC 5 area under the curve; PiB 5 Pittsburgh compound B.
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parameters for optimal classification, their perfor-
mance marginally improved. The 24-month disease-
progression classifier achieved an AUC 5 0.74 and
accuracy of 73% (95% CI5 68%–78%) and the 36-
month disease-progression classifier an AUC 5 0.77
and accuracy of 74% (95% CI 5 69%–79%). The
24-month disease-progression classifier selected (in
rank order) AVLT, Trails B, APOE genotype, and
IL-6R. The 36-month disease-progression classifier
selected (in rank order) AVLT, APOE genotype,
and Trails B. The permutation-corrected classifier sig-
nificance for both classifiers was p , 0.00001. The
results are shown in panels D and F of the figure and
table e-2.

DISCUSSION Our data suggest that plasma, imag-
ing, and cognitive measures can be used to potentially
predict brain amyloidosis with modest accuracy and
confirm the AD relevance of IL-6R and clusterin—
the 2 plasma measures that proved useful for this
classification.

The LOOCV used by the CSF training classifier is
criticized by some for its perceived tendency to inflate
the classifier’s performance. A true cross-validation
should in theory use nonoverlapping samples. Here,
we used the PiB sample as our validation sample.
Both the rigidly run and the tuned PiB testing clas-
sifiers achieved acceptable but modest accuracies.

For identification of subjects with MCI at greatest
risk of disease progression to dementia, the self-
tuning classifiers achieved reasonable but modest pre-
dictive accuracy. Of note, some but not all of the
variables that showed between-group differences
(see table 2) were selected. MMSE, for instance,
was not chosen, but more challenging tests (AVLT
and Trails B) were. IL-6R was the only plasma pro-
tein measure that was included.

Several strengths and limitations of this study
should be acknowledged. ADNI—the premier longi-
tudinal biomarker study in AD—continues to provide
researchers with clinical, cognitive, and biomarker sam-
ples free of charge. ADNI uses unified subject assess-
ment, MRI, PiB-PET, CSF, and peripheral blood
collection protocols and meticulous data quality con-
trol across the sites. Because ADNI uses rigorous exclu-
sion criteria typical of clinical trials, our results have
direct implications for clinical trials but may be less
applicable to outpatient diagnostic assessments. The
lack of a sizable MCI cohort with PiB-PET imaging
that would have allowed a true classifier development
and more extensive cross-validation is a limitation of
this study. There is some etiologic/pathologic uncer-
tainty in the MCI stage because at least 30% of sub-
jects with amnestic MCI have been found to harbor
non-AD pathology.39 However, it is precisely this eti-
ologic heterogeneity that we are trying to overcome

with our analyses. We only assessed the classifier per-
formance with the most widely accepted PiB SUVR
cutoff of 1.5. If higher levels of clinical trial cohort
enrichment for brain amyloidosis, and hence improved
cost-effectiveness, are sought, the use of a higher PiB
SUVR cutoff value might prove valuable to further
reduce the proportion of false-positive cases. Finally,
similar to any other microarray technology, proteomic
microarray analyses have inherent technical limitations.
An important source of variability for this type of tech-
nology is assay time/batch differences between the
samples. This could result in future validation issues.
Although the biological significance of our plasma an-
alytes has been previously documented, our findings
will need to be independently replicated.
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